In patent cases, the term “hindsight bias” refers to fact-finders’
tendency to use their knowledge of the invention at issue in their analysis of
whether that invention would have been obvious. This error occurs when
fact-finders ignore the rule that obviousness of a claimed invention must be
evaluated at the time of patent filing rather that at the time of litigation.
Professor Sean Seymore’s latest article, Foresight Bias in Patent Law, deals with an error that implicates the future rather than the past.
Seymore is concerned with the utility requirement, which denies patents on
chemical compounds that lack a demonstrated consumer end use, such as a
therapeutic use, and on methods of making such compounds. Foresight Bias builds on Seymore’s earlier article, Making Patents Useful, which criticizes
the utility requirement for being too subjective and calls for its elimination.
Seymore’s work may be contrasted to that of Professor Michael Risch, who sees a greater role for the utility requirement (see also here).
Seymore criticizes courts for denying patents on microscale
building blocks, like chemical intermediates and gene fragments, but not on macroscale
building blocks, like bricks. He argues that the two types of building blocks
are similar in that they facilitate further development and are thus useful to
the artisans in the field—chemists and masons, respectively. Although Seymore
does not completely reject the possibility that patent law can justifiably
develop technology-specific standards and acknowledges that chemistry and
biotechnology are fairly characterized as “unpredictable” fields, he argues
that “courts should not craft technology-specific rules based on speculation
about the potential negative consequences of granting a patent.” In Seymore’s
view, this is the crux of the problem: Patents on chemical intermediates have
been wrongly denied based on “hypothesized negative effects of upstream patents
on downstream research” that have not been empirically proven and, for some
types of patents, possibly disproven. Instead of utility, which he considers
too blunt of a tool against patents on chemical intermediates, Seymore would
address preemption concerns on a case-by-case basis by applying the
requirements of enablement and nonobviousness to constrain the scope of such
claims and to ensure technical merit. Seymore’s approach would discourage
overbroad claiming by mandating stringent disclosure requirements and a clear demonstration
of how the claimed invention constitutes a nonobvious improvement over the
prior art.
Although fact-intensive inquiries that would be required
under enablement and obviousness standards would increase administrative costs
relative to the current approach, Seymore’s proposal has much to recommend it. Because claims to chemical intermediates and
methods of making them can differ quite widely depending on the core structure of
the chemical product and the number of embodiments covered, some claims are
surely a greater threat to downstream research than others. The utility
doctrine as currently implemented does nothing to distinguish between these different
claims. Moreover, under the current regime, a patentee might obtain a composition
claim entitling it to control all of a compound’s future uses upon
demonstrating even a trivial utility—so long as that utility is “specific,” or
not widely shared among chemical compounds generally. This example suggests
that utility’s role in protecting downstream innovation from patents is
questionable, and Seymore concludes that it is a “superfluous patentability
requirement which does no real work.”
Note: Cross-posted on the Center for Law and the Biosciences Blog